TEMARIO
  Funcion de la unidad de control durante la ejecucion de una introduccion
 

El chip más importante de cualquier placa madre es el microprocesador o simplemente procesador. Sin él, un ordenador no podría funcionar. A menudo a este componente se le denomina CPU (Central Processing Unit, Unidad de procesamiento central), que descríbe a la perfección su papel dentro del sistema. El procesador es realmente el elemento central del proceso de tratamiento de datos.

La CPU gestiona cada paso en el proceso de los datos. Actúa como el conductor y el supervisor de los componentes de hardware del sistema. Asimismo, está unida, directa o indirectamente, con todos los demás componentes de la placa príncipal. Por lo tanto, muchos grupos de componentes reciben órdenes y son activados de forma directa por la CPU .

El procesador está equipado con buses de direcciones, de datos y de control, que le permiten llevar a cabo sus tareas. Estos sistemas de buses varían dependiendo de la categoría del procesador, lo cual se analizará más adelante.

También durante el desarrollo de los ordenadores personales han ido varíando las unidades funcionales internas de los procesadores, evolucionando drásticamente. Se ha incorporado un número de transistores y circuitos integrados cada vez mayor , y dentro de un espacio cada vez más reducido, a fin de satisfacer las demandas cada vez más exigentes de mayores prestaciones por parte del software. Por ejemplo, el microprocesador Pentium contiene, ubicados sobre una placa de cerámica de aproximadamente 6 milímetros cuadrados, más de tres millones de transistores.

Por todo lo expuesto, se hacen lógicamente necesarios unos procesos de fabrícación también complejos y especiales. Esta técnica permite construir elementos casi microscópicos (un micrómetro, o la millonésima parte de un metro). Esta técnica desarrollada por Intel se conoce como CHMOS-IV .Para apreciar la miniaturízación en cuestión, pensemos que un solo pelo humano tiene una anchura que se extendería sobre 100 unidades de este tipo.

La configuración y capacidad de este procesador son los críteríos fundamentales que determinan el rendimiento de todo el ordenador .

 

La unidad central de proceso (CPU), procesador o microprocesador, es el verdadero cerebro del ordenador. Su misión consiste en controlar y coordinar todas las operaciones del sistema. Para ello extrae, una a una, las instrucciones del programa que está en la memoría central del ordenador (memoria RAM),las analiza y emite las órdenes necesarías para su completa realización.

Para entender cómo funciona un microprocesador, hay que tener en prímer lugar una clara idea acerca de las partes o bloques que lo componen. De otro modo, será prácticamente imposible hacerse una idea sobre su funcionamiento. De una forma global, podemos considerar al microprocesador dividido en tres grandes bloques:

 

UNIDAD DE
DECODIFICACIÓN 

UNIDAD DE EJECUCIÓN

UNIDAD ARITMÉTICO- LÓGICA (ALU)

 

UNIDAD DE DECODIFICACION Se encarga de decodificar la instrucción que se va a ejecutar. Es decir, saber qué instrucción es. Cuando el microprocesador lee de memoria una instrucción, el código de esa instrucción le llega a esta unidad. Esta unidad se encarga de interpretar ese código para averiguar el tipo de instrucción a realizar. Por ejemplo, instrucciones de suma, multiplicación, almacenamiento de datos en memoria,etc.

UNIDAD DE EJECUCION Una vez que la unidad de decodificación sabe cuál es el significado de la instrucción leída de memoria, se lo comunica a la unidad de ejecución. Esta unidad será la encargada de consumar la ejecución y para ello activará las señales necesarias y en un orden determinado. Es decir, es la encargada de dar las órdenes necesarias a las diversas partes del microprocesador para poder ejecutar cada una de las instrucciones.

 UNIDAD ARITMETICO LOGICA (ALU) La ALU (Aritmethic Logic Unit) es el bloque funcional del microprocesador encargado de realizar todas aquellas operaciones matemáticas. Las operaciones que realiza son las siguientes: suma, resta, multiplicación, división y aquellas que trabajan con dígitos binarios (10 que se conoce como operaciones lógicas: ANO, NOR, NOT, NANO, OR, X-OR, etc). En suma, saber cómo funciona un microprocesador, implica conocer cómo se van ejecutando cada una de las instrucciones del programa que se almacena en memoria. Los pasos globales que se siguen a la hora de consumar una instrucción son:

Vamos a profundizar aún más en el estudio de las partes funcionales que componen un microprocesador. No significa que la primera división en bloques anterior fuera errónea, sino que era más superficial. En esta segunda intentaremos profundizar en las diferentes partes que componen un microprocesador .

Podemos, entonces, considerar a un microprocesador compuesto por las dos siguientes unidades:

Unidad de control
Unidad aritmético-lógica (ALU)

 

UNIDAD DE CONTROL

Es el centro nervioso del ordenador, ya que desde ella se controlan y gobiernan todas las operaciones. Cómo funciones básicas tiene:

  • tomar las instrucciones de memoria
  • decodificar o interpretar las instrucciones
  • ejecutar las instrucciones ( tratar las situaciones de tipo interno (inherentes a la propia CPU) y de tipo externo (inherentes a los periféricos)

Para realizar su función, la unidad de control consta de los siguientes elementos:

  • Contador de programa
  • Registro de instrucciones
  • Decodificador
  • Reloj
  • Secuenciador

.Contador de programa. Contiene permanentemente la dirección de memoria de la siguiente instrucción a ejecutar. Al iniciar la ejecución de un programa toma la dirección de su primera instrucción. Incrementa su valor en uno, de forma automática, cada vez que se concluye una instrucción, salvo si la instrucción que se está ejecutando es de salto o de ruptura de secuencia, en cuyo caso el contador de programa tomará la dirección de la instrucción que se tenga que ejecutar a continuación; esta dirección está en la propia instrucción en curso.

.Registro de instrucción. Contiene la instrucción que se está ejecutando en cada momento. Esta instrucción llevará consigo el código de operación (un código que indica qué tipo de operación se va a realizar, por ejemplo una suma) y en su caso los operandos (datos sobre los que actúa la instrucción, por ejemplo los números a sumar) o las direcciones de memoria de estos operandos.

.Decodificador. Se encarga de extraer el código de operación de la instrucción en curso (que está en el registro de instrucción), lo analiza y emite las señales necesarias al resto de elementos para su ejecución a través del secuenciador .

.Reloj. Proporciona una sucesión de impulsos eléctricos o ciclos a intervalos constantes (frecuencia constante), que marcan los instantes en que han de comenzar los distintos pasos de que consta cada instrucción.

.Secuenciador. En este dispositivo se generan órdenes muy elementales (microórdenes) que, sincronizadas por los impulsos de reloj, hacen que se vaya ejecutando poco a poco la instrucción que está cargada en el registro de instrucción.

 

UNIDAD ARITMÉTICO-LÓGICA (ALU)

Esta unidad se encarga de realizar las operaciones elementales de tipo aritmético (sumas, restas, productos, divisiones) y de tipo lógico (comparaciones). A través de un bus interno se comunica con la unidad de control la cual le envia los datos y le indica la operación a realizar .

La ALU está formada a su vez por los siguientes elementos:

  • Circuito operacional
  • Registros de entrada (REN)
  • Registro acumulador
  • Registro de estado (flags)

Unidad Aritmético-lógica

 

.Circuito operacional. Contiene los circuitos necesarios para la realización de las operaciones con los datos procedentes de los registros de entrada (REN). Este circuito tiene unas entradas de órdenes para seleccionar la clase de operación que debe realizar en cada momento (suma, resta, etc).

.Registros de entrada (REN). En ellos se almacenan los datos u operandos que intervienen en una instrucción antes de la realización de la operación por parte del circuito operacional. También se emplean para el almacenamiento de resultados intermedios o finales de las operaciones respectivas.

 .Registro acumulador. Almacena los resultados de las operaciones llevadas a cabo por el circuito operacional. Está conectado con los registros de entrada para realimentación en el caso de operaciones encadenadas. Asimismo tiene una conexión directa al bus de datos para el envío de los resultados a la memoria central o a la unidad de control.

.Registro de estado (flags). Se trata de unos registros de memoria en los que se deja constancia algunas condiciones que se dieron en la última operación realizada y que habrán de ser tenidas en cuenta en operaciones posteriores. Por ejemplo, en el caso de hacer una resta, tiene que quedar constancia si el resultado fue cero, positivo o negativo.

Se conoce como set de instrucciones al conjunto de instrucciones que es capaz de entender y ejecutar un microprocesador.

 

En función del tipo de microprocesador, concretamente si es más avanzado o no, podrá entender y ejecutar más o menos instrucciones.

Las instrucciones se clasifican según su función en:

  • Instrucciones de transferencia de datos
  • Instrucciones de cálculo
  • Instrucciones de transferencia del control del programa
  • Instrucciones de control

 

.Instrucciones de transferencia de datos. Estas instrucciones mueven datos (que se consideran elementos de entrada/salida) desde la memoria hacia los registros internos del microprocesador, y viceversa. También se usan para pasar datos de un registro a otro del microprocesador. Existen algunas instrucciones que permiten mover no sólo un dato, sino un conjunto de hasta 64 KBytes con una sola instrucción.

.Instrucciones de cálculo. Son instrucciones destinadas a ejecutar ciertas operaciones aritméticas, como por ejemplo sumar, restar, multiplicar o dividir, o ciertas operaciones lógicas, como por ejemplo ANO, OR, así como desplazamiento y rotación de bits.

.Instrucciones de transferencia del control del programa. Permiten romper la secuencia lineal del programa y saltar a otro punto del mismo. Pueden equivaler a la instrucción GOTO que traen muchos lenguajes de programación.

.Instrucciones de control. Son instrucciones especiales o de control que actúan sobre el propio microprocesador. Permiten acceder a diversas funciones, como por ejemplo activar o desactivar las interrupciones, pasar órdenes al coprocesador matemático, detener la actividad del microprocesador hasta que se produzca una interrupción, etc.

Prácticamente todas las instrucciones están formadas por dos elementos:

  • código de operación que indica el tipo de operación se va a realizar
  • operandos, que son los datos sobre los que actúa.

Por ejemplo, una instrucción que sume dos números está formado por:

  • código de operación que indique "sumar"
  • primer número a sumar
  • segundo número a sumar

Existen instrucciones que sólo tienen un operando o incluso que no tienen ninguno, estando formadas solamente por el código de operación.

EJECUCIÓN DE LAS INSTRUCCIONES

Para que un programa pueda ser ejecutado por un ordenador, ha de estar almacenado en la memoria central (memoria RAM). El microprocesador tomará una a una las instrucciones que lo componen e irá realizando las tareas correspondientes.

Ejecución de las instrucciones

 

Se denomina ciclo de instrucción al conjunto de acciones que se llevan a cabo en la realización de una instrucción.

Se compone de dos fases:

  • Fase de búsqueda
  • Fase de ejecución

.Fase de búsqueda. En esta fase se transfiere la instrucción que se va a ejecutar desde la memoria central a la unidad de control.

.Fase de ejecución. Consiste en la realización de todas las acciones que conlleva la propia instrucción.

Una forma de clasificar los microprocesadores es en función de las instrucciones que son capaces de ejecutar. Podemos encontrar dos tipos: microprocesadores: con tecnología CISC y RISC.

CISC Complex Instructions Set Computer, Ordenador con un conjunto de instrucciones complejo.

RISC Reduced Instructions Set Computer, Ordenador con un conjunto de instrucciones reducido.

Anteriormente hemos definido el set de instrucciones como el conjunto de instrucciones que es capaz de entender y ejecutar un microprocesador. Si ese microprocesador entiende y ejecuta muchas instrucciones (cientos de ellas), se trata entonces de un microprocesador CISC. En cambio, si el microprocesador entiende y ejecuta muy pocas instrucciones (decenas de ellas), se trata entonces de un microprocesador RISC.

En principio, parece que la tecnología CISC es mucho más ventajosa que la RISC. Pero no es así: un micro CISC tarda mucho tiempo en ejecutar cada una de esas instrucciones. En cambio un micro RISC, como sólo entiende unas cuantas, su diseño interno le permite ejecutarlas en muy poco tiempo, a una gran velocidad, mucho más rápido que un microprocesador CISC.

Cuando se desee que un microprocesador RISC ejecute cierta instrucción que no entiende, ésta se descompondrá en varias instrucciones de las sencillas que sí entiende. Aún así, descomponiendo una instrucción compleja en varias sencillas, es capaz de operar mucho más rápido que el microprocesador CISC, el cual no tiene que descomponer esa instrucción porque la entiende directamente.

Prácticamente, todos los microprocesadores que se utilizan en la fabricación de ordenadores personales (microprocesadores fabricados por Intel) son de tecnología CISC. Intel, poco a poco, va abandonando la tecnología CISC y la sustituye por tecnología RISC. Así por ejemplo, un Pentium, sin dejar de pertenecer a la categoria CISC incorpora algunas caracteristicas de los micros RISC. Es de esperar que en un futuro, los micros fabricados sean de tecnología RISC; entonces los ordenadores serán muchísimo más rápido de lo que hoy los conocemos.

Intel no fabrica microprocesadores completamente RISC para no perder la compatibilidad con los microprocesadores anteriores.

 
  Hoy habia 34 visitantes (41 clics a subpáginas) ¡Aqui en esta página!  
 
Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis